SYNTHESIS AND CYCLOADDITION REACTIONS OF 2-TRIETHYLSILYL-1,3-BUTADIENE

Douglas G. Batt 1 and Bruce Ganem * 2

Department of Chemistry Cornell University Ithaca, New York 14853

Diels-Alder reactions of <u>trans</u>-1-trialkylsilylbutadienes with reactive dienophiles produce cyclohexenylsilanes which are of broad utility in the construction of functionalized six-membered rings. ^{3,4} However the corresponding 2-silylated butadienes have not been characterized in the literature ⁵ nor their reactivity investigated. ⁶ We describe here a simple two-step synthesis of the title compound 3 and report its participation in a variety of representative cycloadditions.

Catalytic hydrosilylation of commercially available 1,4-dichloro-2-butyne $\underline{1}$ with triethylsilane (.01 mole % anhydrous H_2PtCl_6 , neat, 100°) produces $\underline{2}$ quantitatively. This vinylsilane may be distilled, bp 83° (.9 mm) [NMR & (CDCl₃) 6.10 (t, 1H, J=7), 4.20 (d, 2H, J=7), 4.15 (s, 2H), 0.5-1.1 (m, 15H)] but the crude product is usually reduced directly with excess zinc dust in absolute ethanol (reflux, 1-2h) to afford diene $\underline{3}$ directly as a colorless liquid, bp 30-33° (.7 mm), in 55-65% overall yield from $\underline{1}$ [NMR & (CDCl₃) 6.45 (dd, 1H, J=10, 18Hz), 5.82 (d, 1H, J=3Hz), 5.39 (d, 1H, J=3Hz), 5.23 (dd, 1H, J=1, 18Hz), 4.98 (dd, 1H, J=1, 10Hz); IR λ_{max} (film) 6.20 μ ; UV λ_{max} (hexane) 224 nm ($\epsilon=10,200$); mass spectrum m/e 168 (M+), 111 (base)].

Cycloadditions of 3 (1 equiv) with common dienophiles are summarized in the Table and indicate that this diene is considerably more reactive than its 1-substituted isomer. Pure adducts with sym-

metrical dienophiles are readily obtainable in which the alkenyltriethylsilane group masks numerous latent functional groups. ⁷ Fleming and Percival have noted that the silyl substituents in 1-trimethylsilylbutadiene and 2-trimethylsilylcyclopentadiene exhibit only weak directing effects in reactions of those diene systems with unsymmetrical olefins. Diene 3 behaves similarly although the 3.3:1 ratio of para: meta-substituted isomers with ethyl acrylate becomes 7.3:1 in the presence of 20 mole %

$\mathrm{BF_3\text{-}Et_2O}$ (90% yield).		TABLE	
Dienophile	Conditions	Product (Yield)	Physical Data
maleic anhydride	rt, neat, 3h	Si (75%)	NMR δ 6.30 (m, 1H, vinyl); IR 5.44, 5.64 μ diacid mp 139.8 - 140.6° b
dimethyl fumarate	1:1 ØH:CHCl ₃ reflux, 10h	R ₃ Si CO ₂ CH ₃	NMR 5.95 (m, 1H), 3.69 (s, 6H) IR 5.79 μ ; mp 69-70° b
dimethyl acetylenedicarboxyla	ØH, reflux ate 10h	$R_3^{Si} \overset{CO_2^{CH_3}}{\longleftarrow} CO_2^{CH_3}$	(87%) oil; NMR 6.00 (s, 1H), 3.70, 3.69 (2s, 3H each), 2.98 (s, 4H); IR 5.83 μ
benzoquinone	ØH, reflux 6h	R ₃ Si	(85%) oil; NMR 6.65 (s, 2H), 5.93 (m, 1H), 3.1-3.25 (m, 2H); IR 5.95 μ
methacrolein	CHCl ₃ , reflux 18h	R ₃ Si—HOCHO	(69%) oily mixture: HPLC (µ-porasil) shows two overlapping regioisomers. NMR 9.46 (s, 1H), 5.95 (m, 1H).
ethyl acrylate	ØH, reflux 6h	R ₃ Si CO ₂ Et	(77%) oily mixture: 3.3:1 <u>p:m</u> by HPLC NMR 6.00 (m, 1H), 4.15 (q, 2H), 1.39 (t, 3H); IR 5.77μ

(a) Unless otherwise noted, reported yields are for crystalline or chromatographically homogeneous substances. (b) Satisfactory elemental analysis was obtained for this compound.

References and Footnotes

- (1) NSF Predoctoral Fellow (2) Fellow of the A. P. Sloan Foundation, 1978-1980
- (3) S. I. Sadykh-Zade, A. D. Petrov, Zhur. obshchei Khim., 28, 1591 (1958)
- (4) I. Fleming, A. Percival, J. Chem. Soc. Chem. Commun., 178 (1978); 681 (1976)
- (5) A mixture of 1 and 2-(butadienyl)diethylmethylsilanes has been prepared from chloroprene but not characterized: L. L. Shchukovskaya, A. D. Petrov, A. N. Lazarev, <u>Proc. Acad. Sci. USSR, Chem. Sect.</u> (Eng.) 135, 1395 (1960).
- (6) For 3-trimethylsilyl-1,5,5-trimethylcyclohexa-1,3-diene see A. R. Chamberlin, J. E. Stemke, F. T. Bond, J. Org. Chem., 43, 147 (1978).
- (7) See P. F. Hudrlik in "New Applications of Organometallic Reagents in Organic Synthesis, Vol I," ed. D. Seyferth, Elsevier, Amsterdam, 1976, p. 127.
- (8) This research was financially assisted by Grant CH-58 from the American Cancer Society. We wish to thank Dr. R.A. Ruden for helpful discussions about the synthesis of 3.

(Received in USA 15 May 1978; received in UK for publication 4 July 1978)